Quad-Core Intel® Xeon® Processor 5300 Series

Maximize Energy Efficiency and Performance Density in Two-Processor, Standard High-Volume Servers and Workstations

Another Intel First

With the industry’s first quad-core processor for standard high-volume two-processor server platforms, Intel offers IT departments further leaps in performance and performance/watt, building on proven industry leadership by breaking the current performance records held by the Dual-Core Intel® Xeon® 5100 series.
A More Efficient Data Center

Two-processor platforms based on the Quad-Core Intel® Xeon® processor 53001 series and the Intel® Core™ microarchitecture help companies maximize data center performance and density, while reducing cooling challenges. Platforms based on Intel’s new quad-core technology make it easier to deliver more business services in existing facilities, or condense applications for more efficient operations at lower total cost of ownership (TCO).

Two-processor platforms based on the Quad-Core Intel Xeon processor 5300 series deliver 8-thread, 32- and 64-bit processing capabilities with 8 MB of L2 cache per processor,2 providing more computing for threaded applications in a variety of deployments. The Quad-Core Intel Xeon processor 5300 series is ideal for the densest of computing environments where best performance and performance per watt are key requirements. Supported by the Intel® 5000 chipset family and Fully Buffered DIMM (FBDIMM) technology, Quad-Core Intel Xeon processor 5300 series-based platforms are expected to deliver breakthrough performance with better power efficiency, delivering up to 1.5 times the performance compared to leading Dual-Core Intel® Xeon® processor 5100 series in the same power envelope and up to 2.5 times the performance compared to the best published results of AMD Opteron® Model 2220.3

Maximize performance, performance/watt, and data center density with the industry’s first quad-core technology

With 4 cores, large 8 MB of on-die L2 cache,2 and the performance-enhancing and energy-efficient technologies of the Intel Core microarchitecture, the Quad-Core Intel Xeon processor 5300 series helps IT departments maximize performance and density with fewer cooling challenges. Many server applications are well-threaded as a result of years of running in symmetric multi-processing environments. Well-threaded server applications will benefit from more cores, larger cache, and higher throughput and memory capacity of Quad-Core Intel Xeon processor 5300 series-based servers and the Intel Core microarchitecture. Find out more about Intel Core microarchitecture at www.intel.com/technology/architecture/coremicro.

Platforms based on the Quad-Core Intel Xeon processor 5300 series also support many Intel® advanced server technologies that help companies enhance operations, reduce costs, and improve business continuity:

- Intel® Virtualization Technology4 (Intel VT) provides hardware assistance for software-based virtual environments to support new capabilities, including 64-bit operating systems (OS) and applications.
- Intel® I/O Acceleration Technology5 (Intel I/OAT) provides, hardware- and software-supported I/O acceleration that significantly improves data throughput.
Virtualize confidently with more performance headroom, enhanced reliability, and industry-wide commitment and support.

Quad-Core Intel Xeon processor 5300 series delivers the most headroom and performance of any two-processor general-purpose server, so you can confidently consolidate applications onto fewer systems using proven industry-standard virtualization solutions. With the highest performance per watt of our Intel® Xeon® processors, you can virtualize environments onto dense 1U rack and blade form factors with fewer cooling challenges, giving you more performance and services per square foot.

Quad-Core Intel Xeon processor 5300 series integrates virtualization hardware assistance with Intel Virtualization Technology, enhancing capabilities for virtual environments on Microsoft, VMware, and XenSource virtualization software. A growing number of independent software vendors (ISV) and original equipment manufacturers (OEM) support virtualization on Intel Virtualization Technology-enabled platforms through the Intel and VMware Virtualize ASAP program, the industry’s first and only collaborative, global effort to deliver optimized virtualization solutions and practices to IT professionals and companies.

The 64-bit computing of the Quad-Core Intel Xeon processor 5300 series gives you additional application headroom, memory flexibility, and increased security for virtual and dedicated environments. By supporting larger data sets and both 32- and 64-bit applications, Dual-Core and Quad-Core Intel Xeon processor-based servers and workstations allow the smooth migration of your business to 64-bit applications. And, with millions of 64-bit processors already shipped, you know you can depend on Intel’s proven track record to help you make a smooth transition to the next level of computing.
Quad-Core Intel® Xeon® Processor 5300 Series Overview

Two-processor servers and workstations based on the Quad-Core Intel Xeon processor 5300 series maximize performance and efficiency, with reliability, versatility, and low ownership costs.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quad-core processing</td>
<td>• Maximizes performance and performance/watt for greater performance per square foot for data center infrastructures and highly dense deployments.</td>
</tr>
<tr>
<td></td>
<td>• Increases performance and threading headroom for multi-threaded applications and heavy multi-tasking scenarios, plus helps boost system utilization through virtualization and application responsiveness.</td>
</tr>
<tr>
<td>Intel® Core™ microarchitecture</td>
<td>• Better performance on multiple application types and user environments, while reducing cooling challenges, enabling more capable, denser data center deployments.</td>
</tr>
<tr>
<td>Large 8 MB of on-die L2 cache<sup>2</sup></td>
<td>• Increases efficiency of L2 cache-to-core data transfers, maximizing main memory to processor bandwidth and reducing latency.</td>
</tr>
<tr>
<td></td>
<td>• Up to 4 MB of L2 cache can be allocated to one core.</td>
</tr>
<tr>
<td>1066 and 1333 MHz system bus</td>
<td>• Fast, dedicated front-side buses for increased throughput.</td>
</tr>
<tr>
<td>Intel® Virtualization Technology<sup>4</sup></td>
<td>• New processor hardware enhancements that support software-based virtualization, enabling migration of more environments — including 64-bit OS and applications — to virtual environments.</td>
</tr>
<tr>
<td>Intel® 64 architecture<sup>6</sup></td>
<td>• Flexibility for 64-bit and 32-bit applications and operating systems.</td>
</tr>
<tr>
<td>Demand-Based Switching (DBS) with Enhanced Intel SpeedStep® technology</td>
<td>• Helps reduce average system power consumption and potentially improves system acoustics.</td>
</tr>
</tbody>
</table>

Find out more about Quad-Core Intel® Xeon® processors at www.intel.com/products/processor/xeon
What is the 5000 Sequence?

At Intel, our processor series numbers help differentiate processor features beyond front-side bus (FSB) speed and brand name. New advancements in our processors — other than bus speed — like number of cores, architecture, cache, power dissipation, and embedded Intel technologies, contribute significantly to performance, power efficiency, and other end-user benefits. Our processor sequences will help developers decide on the best processor for their platform designs, and help end-users understand all the characteristics that contribute to their overall experience.

Intel offers four processor number sequences for server applications

<table>
<thead>
<tr>
<th>Processor Sequence</th>
<th>Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-Core Intel® Xeon® processor 30001 sequence</td>
<td>One-processor servers for small business, entry, or first server</td>
</tr>
<tr>
<td>Dual-Core and Quad-Core Intel® Xeon® processor 50001 sequence</td>
<td>Two-processor general-purpose, standard high-volume servers and workstations based on the Intel Xeon processor</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 70001 sequence</td>
<td>Greater scalability with 4- to 32-processor enterprise servers based on the Intel Xeon processor</td>
</tr>
<tr>
<td>Dual-Core Intel® Itanium® 2 processor 90001 sequence</td>
<td>Maximum performance and scalability for RISC replacement usage with 2- to 512-processor servers</td>
</tr>
</tbody>
</table>

Quad-Core Intel Xeon Processor 5300 Series

The Quad-Core Intel Xeon processor 5300 series is available in a range of FSB speeds and power ratings to match different computing demands. All processors integrate Intel Virtualization Technology and Intel 64 architecture, and are available in the LGA771 packaging.

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>Cache Size</th>
<th>Front-Side Bus</th>
<th>Power</th>
<th>Demand-Based Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quad-Core Intel® Xeon® processor X53551</td>
<td>2.66 GHz</td>
<td>8 MB</td>
<td>1333 MHz</td>
<td>120W</td>
<td>Yes</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® processor E53451</td>
<td>2.33 GHz</td>
<td>8 MB</td>
<td>1333 MHz</td>
<td>80W</td>
<td>Yes</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® processor E53201</td>
<td>1.86 GHz</td>
<td>8 MB</td>
<td>1066 MHz</td>
<td>80W</td>
<td>Yes</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® processor E53101</td>
<td>1.60 GHz</td>
<td>8 MB</td>
<td>1066 MHz</td>
<td>80W</td>
<td>No</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® processor E53351</td>
<td>2.0 GHz</td>
<td>8 MB</td>
<td>1333 MHz</td>
<td>80W</td>
<td>No</td>
</tr>
</tbody>
</table>
Maximize Performance with Quad-Core Intel® Xeon® Processor 5300 Series

Get performance per watt information on the Quad-Core Intel Xeon processor 5300 series at www.intel.com/performance/server/xeon/ppw.htm

Benchmark Description for SPECint_rate_base2000: SPECint_rate_base2000 is a compute-intensive benchmark that measures the integer throughput performance of a computer system carrying out a number of parallel tasks.

Configuration Details: Data Source: Published/measured results as of October 2006.

Benchmark Description for Linpack: Linpack is a floating-point benchmark that solves a dense system of linear equations in parallel. The metric produced is Giga-FLOPS or billions of floating-point operations per second. The benchmark is used to determine the world’s fastest computers at the website http://www.top500.org/

Configuration Details: Data Source: Intel internal measurement. September 2006.
Dual-Core Intel Xeon processor 5160-based platform details: Intel preproduction customer reference board with two Dual-Core Intel Xeon processor 5160, 3.00 GHz with 4M L2 Cache, dual 1333 MHz system bus, 8 GB (8x1 GB) 667 MHz FB-DIMM memory, Red Hat Enterprise Linux AS* Release 4 (Nahant update 3) Linux Kernel version 2.6.9-34.el5smp on X86-64. 5Kx5K through 30Kx30K matrix sizes used. Intel Linpack.
Quad-Core Intel Xeon processor-based platform details: Intel Server pre-production platform with two Quad-Core Intel Xeon processor X5355, 2.66 GHz with 2x4M L2 Cache, 1.333 MHz system bus, 8 GB (8x1 GB) 667 MHz FB-DIMM memory, Red Hat Enterprise Linux AS* Release 4 (Nahant update 3) Linux Kernel version 2.6.9-34.el5smp on X86-64. 5Kx5K through 30Kx30K matrix sizes used. Workload Type: Scalar. Intel Linpack.

Benchmark Description for Enterprise Resource Planning: Workload emulates a SAP*-based Sales and Distribution application and helps ERP. The performance result is a measure of the number of users supported by the server.

Configuration Details: Data Source: Intel internal measurement. September 2006.
Dual-Core Intel Xeon processor 5160-based platform details: Intel Server pre-production platform with two Dual-Core Intel Xeon processor 5160, 3.00 GHz with 4M L2 Cache, 1.333 MHz system bus, 16 GB (8x2 GB) 667 MHz FB-DIMM memory, Linux SLES9 SP2 OS.
Quad-Core Intel Xeon processor-based platform details: Intel Server pre-production platform with two Quad-Core Intel Xeon processor X5355, 2.66 GHz with 2x4M L2 Cache, 1.333 MHz system bus, 32 GB (8x4 GB) 667 MHz FB-DIMM memory, Linux SLES9 SP2 OS.

continued on page 8
Flexibility and Stability with Intel® 5000 Series Chipsets

The following chipsets for the Dual-Core and Quad-Core Intel® Xeon® processor 5000 sequence-based two-processor platforms enable highly balanced systems, with up to 21 GB/s throughput from processor to memory and I/O, matching the improved processor performance and advanced FBDIMM memory technology. These chipsets incorporate dual independent, dedicated FSBs, FBDIMM support for up to 64 GB of memory capacity with advanced reliability and data availability features, and up to 16 lanes (x16) of PCI Express*.

Server chipsets

Two chipset versions for the Quad-Core Intel Xeon processor 5300 series enable server configuration flexibility for unique business needs and market segments where maximum performance and performance/watt are key requirements.

- **Intel® 5000P chipset.** Designed for performance and volume server platforms, this chipset supports 1066 and 1333 MHz system bus speeds, three PCI Express x8 links (each configurable as two x4 links), FBDIMM 533 and 667 technology, point-to-point connection for Intel® 6321 ESB I/O Controller Hub at 2 GB/s, and Intel® 6700PXH 64-bit PCI hub.

- **Intel® 5000V chipset.** For value platforms, this chipset supports 1066 and 1333 MHz system bus speeds, one PCI Express x8 link (configurable as two x4 links), FBDIMM 533 and 667 technology, point-to-point connection for Intel® 6321 ESB I/O Controller Hub at 2 GB/s, and Intel® 6700PXH 64-bit PCI hub.

Workstation chipset

Two-processor workstations based on the Quad-Core Intel Xeon processor 5300 series are ideal for highly threaded applications that scale with the additional processing cores as well as user workflows with multiple applications being used simultaneously. Quad-core technology-based workstations are ideal for demanding applications in computer aided engineering (CAE), electronic design automation (EDA), digital media, financial analysis, oil and gas exploration, and software engineering.

- **Intel® 5000X chipset.** For performance and volume workstation platforms, this chipset supports 1066 and 1333 MHz system bus speeds, one PCI Express x8 link (configurable as two x4 links) and one configurable x16 link for graphics support, FBDIMM 533 and 667 technology, point-to-point connection for Intel® 6321 ESB I/O Controller Hub at 2 GB/s, and Intel® 6700PXH 64-bit PCI hub.

These platform configurations provide flexibility and headroom for future growth in multiple deployments:

- High-end workstations
- Front-end servers
- Small and medium business data centers
- Enterprise infrastructures
- High-performance computing (HPC)

Quad-Core Intel Xeon processor 5300 series enables companies, designers, manufacturers, and resellers to deploy right-sized solutions for today’s environments. Genuine Intel® architecture and new Intel 5000 series chipsets give you reliability you can count on, while a single platform design supporting dual-core and quad-core processors help ensure investment protection and stability in your IT environment over the long term.
continued from page 6

Configuration Details: Performance estimated based on Intel internal measurement - October 2006.

Quad-Core Intel Xeon processor-based platform details: Intel Server pre-production platform with two Quad-Core Intel Xeon processor X5355, 2.66 GHz with 2x4M L2 Cache, 1333 MHz system bus, 8 GB (8x1 GB) 667 MHz FB-DIMM memory, Windows 2003 Enterprise Edition*. BEA (Rockit*) 5.0.26.4.404. Performance measured at 162.194 bops and 81,097 bops/ym.

Benchmark Description for Fluent: Fluent is a commercial engineering application used to model computational fluid dynamics. Performance measured in jobs/day.

Configuration Details: Data Source: Intel internal measurement October 2006.

Dual-Core Intel Xeon processor 5160-based platform details: Intel Server pre-production platform with two Dual-Core Intel Xeon processor 5160, 3.00 GHz with 4M L2 Cache, 1333 MHz system bus, 8 GB (8x1 GB) 667 MHz FB-DIMM memory, Red Hat Enterprise Linux* AS Release 4 (Nahant update 3) Linux Kernel version 2.6.9-34.el.smp on X86-64. Fluent 6.2 Version.

Quad-Core Intel Xeon processor-based platform details: Intel Server pre-production platform with two Quad-Core Intel Xeon processor X5355, 2.66 GHz with 2x4M L2 Cache, 1333 MHz system bus, 8 GB (8x1 GB) 667 MHz FB-DIMM memory, Red Hat Enterprise Linux AS* Release 4 (Nahant update 3) Linux Kernel version 2.6.9-34.el.smp on X86-64. Fluent 6.2 Version.

Benchmark Description for Transaction Processing: This application evaluates the capacity of a database server in supporting transaction processing. It simulates execution of user transactions against a database in an order-entry environment. Performance measured in transactions per second.

Configuration Details: Data Source: Intel internal measurement, September 2006.

Dual-Core Intel Xeon processor 5160-based platform details: Intel Server pre-production platform with two Dual-Core Intel Xeon processor 5160, 3.00 GHz with 4M L2 Cache, 1333 MHz system bus, 64 GB (16x4 GB) 667 MHz FB-DIMM memory, Microsoft Windows 2003 Enterprise Edition*.

Quad-Core Intel Xeon processor-based platform details: Intel Server pre-production platform with two Quad-Core Intel Xeon processor X5355, 2.66 GHz with 2x4M L2 Cache, 1333 MHz system bus, 64 GB (16x4 GB) 667 MHz FB-DIMM memory, Microsoft Windows 2003 Enterprise Edition*.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit http://www.intel.com/performance/resources/results.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

All dates and products specified are for planning purposes only and are subject to change without notice.

Relative performance for each benchmark is calculated by taking the actual benchmark result for the first platform tested and assigning it a value of 1.0 as a baseline. Relative performance for the remaining platforms tested was calculated by dividing the actual benchmark result for the baseline platform into each of the specific benchmark results of each of the other platforms and assigning them a relative performance number that correlates with the performance improvements reported.

SPECint2000 and SPECfp2000 benchmark tests reflect the performance of the microprocessor, memory architecture and compiler of a computer system on compute-intensive, 32-bit applications. SPEC benchmark tests results for Intel microprocessors are determined using particular, well-configured systems. These results may or may not reflect the relative performance of Intel microprocessor in systems with different hardware or software designs or configurations (including compilers). Buyers should consult other sources of information, including system benchmarks, to evaluate the performance of systems they are considering purchasing.

1 Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor series, not across different processor sequences. See http://www.intel.com/products/processor_number for details.
2 Each pair of cores integrates 4 MB of L2 Intel Advanced Smart Cache.
3 50% performance claim based on performance with measured SPECint_rate_base2000 results. Published/measured results as of Sept 21, 2006. 150% over Opteron performance claim based on SPECint_rate_base2000 benchmark. Quad-Core Intel Xeon processor 5100 series is Intel internal measured data and the Opteron data is based on best published data as of Sept 19, 2006. For more information about server performance, visit www.intel.com/performance/server.
4 Intel Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and applications enabled for virtualization technology. Functionality, performance or other virtualization technology benefits will vary depending on hardware and software configurations. Virtualization technology-enabled BIOS and VMM applications are currently in development.
5 Intel® I/O Acceleration Technology (Intel® I/OAT) requires an operating system that supports Intel I/OAT.
6 64-bit Intel® Xeon® processors with Intel 64 architecture requires a computer system with a processor, chipset, BIOS, OS, device drivers and applications enabled for Intel 64 architecture. Processor will not operate (including 32-bit operation) without an Intel 64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Intel 64 architecture-enabled OS, BIOS, device drivers and applications may not be available. Check with your vendor for more information.
7 Available in Q1, 2007.
8 Information in this document is provided in connection with Intel products. Intel disclaims any express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications, Intel may make changes to specifications and product descriptions at any time, without notice.
9 Other names and brands may be claimed as the property of others.